4709 independent reflections 2066 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.068$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,2-Bis(2-tert-butylphenylimino)-1,2dihydroacenaphthylene

L. C. Ferreira,^a* Carlos A. L. Filgueiras,^a M. Horner,^b Lorenzo do C. Visentin^a and Jairo Bordinhao^a

^aInstituto de Química, Universidade Federal do Rio de Janeiro, Caixa Postal 68563, 21949-900 Rio de Janeiro, RI, Brazil, and ^bDepartamento de Ouímica. Universidade Federal de Santa Maria, Caixa Postal 5031, 97110-900 Santa Maria, RS, Brazil Correspondence e-mail: leonardocf@iq.ufrj.br

Received 21 June 2007; accepted 30 June 2007

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.079; data-to-parameter ratio = 15.1.

The crystal structure of the title compound, $C_{32}H_{32}N_2$, reveals a dimeric association of α -diimine units into centrosymmetric dimers via intermolecular non-classical C-H···N hydrogen bonds. There is also intramolecular non-classical C-H···N bonding between the methyl groups and the N atoms of the α diimine unit. In addition, the crystal packing indicates $\pi - \pi$ interactions between acenaphthylene rings [3.888 (7) Å]. The deviation from a planar arrangement of the molecule can be attributed to both inter- and intramolecular non-classical hydrogen bonding.

Related literature

For related literature, see: Aoki & Salam (2001); Jeffrey et al. (1985).

Experimental

Crystal data

$_{32}N_2$	$\gamma = 71.768 \ (3)^{\circ}$
444.60	V = 1270.06 (13) Å ³
nic, $P\overline{1}$	Z = 2
).0996 (6) Å	Mo $K\alpha$ radiation
2.3843 (7) Å	$\mu = 0.07 \text{ mm}^{-1}$
2.4174 (7) Å	T = 291 (2) K
0.771 (3)°	$0.54 \times 0.10 \times 0.08 \text{ mm}$
3.256 (4)°	
0.0996 (6) A 2.3843 (7) Å 2.4174 (7) Å 0.771 (3)° 3.256 (4)°	Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 291 (2) K $0.54 \times 0.10 \times 0.08 \text{ mm}^{-1}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: none 21526 measured reflections

Refinement

ł

v S

4

3

$R[F^2 > 2\sigma(F^2)] = 0.044$	H atoms treated by a mixture of
$VR(F^{-}) = 0.079$	independent and constrained
709 reflections	$\Delta \rho = 0.15 \text{ e} \text{\AA}^{-3}$
12 parameters	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$
1	7 11111

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C23-H23\cdots N1^{i}$	0.97 (2)	2.62 (2)	3.331 (3)	130.6 (17)
C28−H28C···N1	0.96	2.40	3.048 (3)	125
C29−H29B···N1	0.96	2.35	3.010 (3)	125
$C31 - H31B \cdots N2$	0.96	2.30	2.975 (3)	127

Symmetry code: (i) -x, -y + 1, -z + 1.

Data collection: COSMO (Bruker, 2004) and APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank CNPq and CAPES for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2141).

References

Aoki, K. & Salam, M. A. (2001). Inorg. Chim. Acta, 71, 314-318.

Bruker (2004). APEX2 (Version 1.0.22), COSMO (Version 1.48) and SAINT (Version 7.06a). Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Jeffrey, G. A., Maluszynska, H. & Mitra, J. (1985). Int. J. Biol. Macromol. 7, 336-348.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o3427 [doi:10.1107/S1600536807032011]

1,2-Bis(2-tert-butylphenylimino)-1,2-dihydroacenaphthylene

L. C. Ferreira, C. A. L. Filgueiras, M. Horner, L. do C. Visentin and J. Bordinhao

Comment

The present report describes the main structural features of a novel α -diimine, as given in Scheme 1 and Figure 1. This molecule is bis(*N*-2-*tert*-butylphenyl)imineacenaphthene, in which the two *tert*-butyl substituents on the aromatic rings are *cis* to each other.

In addition, another strong feature of this molecular structure is the presence of molecular interactions *via* non-classical hydrogen bonds (Jeffrey *et al.*, 1985), represented as C—H···N. Each α -diimine unit presents two intermolecular interactions, generating a dimeric structure with an inversion center, as shown in Figure 2. The geometric parameters of all non-classical interactions are listed in Table 1.

The dimers are related by translation along the crystallographic axis a. The cell packing shows that the dimers present π - π interactions between the acenaphthenequine rings [C4=C9...C9ⁱⁱ=C4ⁱⁱ=3.880 (7) Å; symmetry code: (ii) 1 - x, 1 - y, 1 - z] (Fig. 3), in agreement with results found in the literature (Aoki & Salam, 2001).

Lastly, it is believed that both the inter- as well as the intramolecular interactions are partly responsible for the large deviation of planarity shown between the aromatic rings and the *tert*-butyl substituents, C13—C14—C15—C16—C17—C18 (r.m.s. = 0.0118) and C19—C20—C21—C22—C23—C24 (r.m.s. = 0.0030), of 28.84 (7)°. In addition, the torsion angles formed by the atoms C5—C1—N1—C13, of -7.7 (4)°, and C3—C2—N2—C19, of 10.8 (4)°, are also ascribed to the aforementioned deviation.

Experimental

0.5465 g (3 mmole) of acenaphthenequinone was placed in a 100 ml round bottom flask, as well as 0.935 ml (6 mmole) of 2-*tert*-butylaniline, with MeOH (30 ml) as the solvent and glacial acetic acid as catalyst (5 drops). The flask was connected to a Liebig condenser and the reaction mixture was kept under reflux for 3 h, after which heating was stopped. After cooling to room temperature, a red solid precipitated. The mixture was filtered and the solid washed with MeOH (20 ml). The red precipitate was recrystallized from MeOH, giving small red crystals suitable for *X* ray crystallography. (Yield: 85%, Melting point: 485 K)

Refinement

The hydrogen atoms of phenyl rings and acenaphthene ring were fixed geometrically to a distance 0.93 Å; the carbon rings and its respective atoms have been dealt with $U_{iso}(H)$ 1.2 U_{eq} (Csp²). The hydrogen atom H23 was located in the Fourier map and refined. The hydrogen atoms of methyl group were fixed geometrically to a distance 0.96 Å; the carbon methyl and its respective atoms have been dealt with $U_{iso}(H)$ 1.5 U_{eq} (Csp³).

Figures

Fig. 1. *ORTEP* drawing of bis(*N*-2-*tert*-butylphenyl)imineacenaphthene. Thermal ellipsoids with 50% probability. Hydrogen atoms were omitted so as not to encumber the drawing.

Fig. 2. Representation of all non-classical inter- and intramolecular interactions in the dimer.[symmetry code: (i) -x, 1 - y, 1 - z].

Fig. 3. Representation of the packing along of crystallographic axis a. [symmetry code: (ii) 1 - x, 1 - y, 1 - z].

1,2-Bis(2-tert-butylphenylimino)-1,2-dihydroacenaphthylene

Crystal data	
$C_{32}H_{32}N_2$	Z = 2
$M_r = 444.60$	$F_{000} = 476$
Triclinic, PT	$D_{\rm x} = 1.163 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Melting point: 485 K
<i>a</i> = 10.0996 (6) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 12.3843 (7) Å	$\theta = 1 - 30^{\circ}$
c = 12.4174 (7) Å	$\mu = 0.07 \text{ mm}^{-1}$
$\alpha = 60.771 \ (3)^{\circ}$	T = 291 (2) K
$\beta = 73.256 \ (4)^{\circ}$	Block, red
$\gamma = 71.768 \ (3)^{\circ}$	$0.54 \times 0.10 \times 0.08 \text{ mm}$
$V = 1270.06 (13) \text{ Å}^3$	

Data collection

Bruker APEX II CCD area-detector diffractometer	2066 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.068$
Monochromator: graphite	$\theta_{\text{max}} = 25.5^{\circ}$
T = 291(2) K	$\theta_{\min} = 3.1^{\circ}$
φ and ω scans	$h = -12 \rightarrow 12$
Absorption correction: none	$k = -14 \rightarrow 14$
21526 measured reflections	$l = -15 \rightarrow 15$

4709 independent reflections

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.044$	$w = 1/[\sigma^2(F_o^2) + (0.02P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.079$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.03	$\Delta \rho_{max} = 0.15 \text{ e } \text{\AA}^{-3}$
4709 reflections	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$
312 parameters	Extinction correction: SHELXL97, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0177 (11)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.3511 (2)	0.59137 (18)	0.23428 (16)	0.0499 (5)
C2	0.3089 (2)	0.47043 (17)	0.34154 (16)	0.0499 (5)
C3	0.4264 (2)	0.40396 (19)	0.41384 (18)	0.0539 (5)
C4	0.5341 (2)	0.47330 (19)	0.34771 (19)	0.0537 (5)
C5	0.4974 (2)	0.58409 (18)	0.24060 (18)	0.0518 (5)
C6	0.5966 (2)	0.65484 (19)	0.16418 (19)	0.0682 (6)
H6	0.5753	0.7279	0.0920	0.082*
C7	0.7324 (3)	0.6146 (3)	0.1972 (3)	0.0865 (8)
H7	0.8006	0.6623	0.1454	0.104*
C8	0.7667 (3)	0.5086 (3)	0.3021 (3)	0.0865 (8)
H8	0.8572	0.4856	0.3207	0.104*
C9	0.6671 (3)	0.4327 (2)	0.3833 (2)	0.0707 (6)
C10	0.6881 (3)	0.3190 (3)	0.4922 (3)	0.0854 (8)
H10	0.7746	0.2886	0.5200	0.102*

C11	0.5831 (3)	0.2532 (2)	0.5570 (2)	0.0856 (7)
H11	0.5992	0.1791	0.6296	0.103*
C12	0.4509 (2)	0.29298 (19)	0.51840 (18)	0.0705 (6)
H12	0.3819	0.2448	0.5631	0.085*
C13	0.28881 (17)	0.78949 (17)	0.06525 (17)	0.0485 (5)
C14	0.27507 (17)	0.82530 (17)	-0.05757 (16)	0.0475 (5)
C15	0.29109 (19)	0.94722 (18)	-0.14324 (17)	0.0630(6)
H15	0.2858	0.9738	-0.2263	0.076*
C16	0.3145 (2)	1.03100 (18)	-0.11115 (19)	0.0749 (6)
H16	0.3251	1.1118	-0.1720	0.090*
C17	0.3221 (2)	0.99505 (19)	0.0098 (2)	0.0726 (6)
H17	0.3353	1.0518	0.0325	0.087*
C18	0.31013 (19)	0.87446 (19)	0.09798 (17)	0.0644 (6)
H18	0.3163	0.8494	0.1805	0.077*
C19	0.14738 (18)	0.33474 (17)	0.44951 (17)	0.0498 (5)
C20	0.13939 (17)	0.23113 (17)	0.43590 (17)	0.0499 (5)
C21	0.07626 (19)	0.13984 (17)	0.5408 (2)	0.0659 (6)
H21	0.0698	0.0693	0.5355	0.079*
C22	0.0227 (2)	0.1477 (2)	0.6522 (2)	0.0756 (6)
H22	-0.0191	0.0838	0.7198	0.091*
C23	0.0310(2)	0.2494 (2)	0.6637 (2)	0.0717 (7)
C24	0.0927 (2)	0.34239 (18)	0.56205 (19)	0.0665 (6)
H24	0.0978	0.4124	0.5689	0.080*
C25	0.23720 (19)	0.73914 (17)	-0.09427 (15)	0.0519 (5)
C26	0.2008 (2)	0.21503 (18)	0.31614 (18)	0.0629 (5)
C27	0.2373 (2)	0.79766 (17)	-0.23541 (15)	0.0765 (6)
H27A	0.2133	0.7405	-0.2545	0.115*
H27B	0.3295	0.8131	-0.2800	0.115*
H27C	0.1692	0.8760	-0.2600	0.115*
C28	0.08905 (19)	0.71504 (18)	-0.02588(17)	0.0797 (7)
H28A	0.0647	0 6608	-0.0487	0.120*
H28B	0.0219	0 7940	-0.0489	0.120*
H28C	0.0878	0.6752	0.0628	0.120*
C29	0.3438(2)	0.61238 (15)	-0.06099(16)	0.0699 (6)
H29A	0.3175	0 5603	-0.0853	0.105*
H29B	0.3440	0.5703	0.0276	0.105*
H29C	0.4365	0.6273	-0 1044	0.105*
C30	0.3615(2)	0 1955 (2)	0 2940 (2)	0.1053 (8)
H30A	0.4003	0.1855	0.2184	0.158*
H30B	0 3983	0.1211	0.3632	0.158*
H30C	0.3869	0.2677	0.2865	0.158*
C31	0.1421(2)	0.33014 (19)	0.2003	0.0930(7)
H31A	0.1826	0.3173	0.1294	0.139*
H31B	0.1656	0.4043	0.1932	0.139*
H31C	0.0413	0 3410	0.2167	0.139*
C32	0.1652 (2)	0.09977 (19)	0.3219(2)	0.0984 (8)
H32A	0.2059	0.0936	0.2445	0 148*
H32R	0.0645	0.1098	0.3350	0.148*
H32C	0.2031	0.0243	0.3896	0.148*
11520	0.2031	0.0275	0.5070	0.170

N1	0.26365 (15)	0.67005 (15)	0.16129 (13)	0.0526 (4)
N2	0.19586 (17)	0.44176 (13)	0.34750 (13)	0.0545 (4)
H23	-0.0036 (17)	0.2586 (14)	0.7406 (15)	0.077 (6)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0590 (15)	0.0515 (14)	0.0470 (12)	-0.0150 (11)	-0.0098 (11)	-0.0246 (11)
C2	0.0603 (14)	0.0464 (13)	0.0476 (12)	-0.0128 (12)	-0.0106 (11)	-0.0220 (11)
C3	0.0620 (15)	0.0531 (14)	0.0510 (13)	-0.0051 (13)	-0.0178 (12)	-0.0255 (12)
C4	0.0534 (15)	0.0582 (15)	0.0639 (14)	-0.0006 (13)	-0.0151 (13)	-0.0410 (13)
C5	0.0519 (15)	0.0527 (14)	0.0637 (14)	-0.0147 (12)	-0.0042 (12)	-0.0355 (12)
C6	0.0616 (16)	0.0692 (16)	0.0895 (16)	-0.0187 (14)	-0.0046 (14)	-0.0475 (13)
C7	0.0604 (19)	0.102 (2)	0.131 (2)	-0.0234 (16)	0.0007 (16)	-0.081 (2)
C8	0.0552 (17)	0.114 (2)	0.135 (2)	0.0018 (18)	-0.0235 (18)	-0.095 (2)
C9	0.0625 (19)	0.085 (2)	0.0918 (19)	0.0030 (17)	-0.0241 (16)	-0.0637 (17)
C10	0.074 (2)	0.106 (2)	0.099 (2)	0.0239 (17)	-0.0439 (17)	-0.070 (2)
C11	0.094 (2)	0.087 (2)	0.0741 (17)	0.0171 (18)	-0.0405 (17)	-0.0409 (15)
C12	0.0810 (18)	0.0700 (17)	0.0610 (14)	-0.0009 (13)	-0.0252 (13)	-0.0306 (13)
C13	0.0505 (12)	0.0440 (13)	0.0474 (12)	-0.0133 (10)	-0.0054 (9)	-0.0166 (11)
C14	0.0463 (12)	0.0420 (12)	0.0493 (12)	-0.0056 (10)	-0.0086 (10)	-0.0179 (11)
C15	0.0772 (15)	0.0567 (14)	0.0542 (13)	-0.0144 (12)	-0.0136 (11)	-0.0216 (12)
C16	0.0986 (18)	0.0529 (14)	0.0649 (15)	-0.0220 (13)	-0.0146 (13)	-0.0152 (13)
C17	0.0955 (17)	0.0526 (15)	0.0803 (15)	-0.0278 (12)	-0.0167 (13)	-0.0285 (13)
C18	0.0853 (15)	0.0587 (14)	0.0577 (13)	-0.0263 (12)	-0.0113 (11)	-0.0253 (12)
C19	0.0511 (13)	0.0417 (13)	0.0487 (12)	-0.0107 (10)	-0.0096 (10)	-0.0124 (11)
C20	0.0425 (12)	0.0440 (12)	0.0571 (13)	-0.0100 (10)	-0.0073 (10)	-0.0174 (11)
C21	0.0640 (15)	0.0515 (14)	0.0719 (15)	-0.0175 (11)	-0.0094 (12)	-0.0169 (13)
C22	0.0644 (15)	0.0648 (17)	0.0693 (16)	-0.0176 (12)	-0.0058 (12)	-0.0082 (13)
C23	0.0690 (16)	0.0757 (18)	0.0520 (15)	-0.0042 (14)	-0.0064 (12)	-0.0224 (15)
C24	0.0809 (16)	0.0569 (14)	0.0582 (13)	-0.0100 (12)	-0.0130 (12)	-0.0241 (12)
C25	0.0524 (13)	0.0535 (13)	0.0515 (12)	-0.0087 (11)	-0.0116 (10)	-0.0240 (11)
C26	0.0602 (15)	0.0613 (14)	0.0761 (15)	-0.0225 (11)	-0.0038 (12)	-0.0349 (12)
C27	0.0948 (16)	0.0786 (15)	0.0643 (14)	-0.0084 (12)	-0.0275 (12)	-0.0353 (12)
C28	0.0692 (16)	0.1032 (18)	0.0887 (15)	-0.0307 (13)	-0.0112 (12)	-0.0518 (14)
C29	0.0849 (16)	0.0529 (13)	0.0719 (13)	-0.0028 (12)	-0.0164 (11)	-0.0321 (11)
C30	0.0646 (17)	0.149 (2)	0.139 (2)	-0.0252 (15)	0.0108 (15)	-0.1028 (19)
C31	0.130 (2)	0.0931 (18)	0.0710 (15)	-0.0391 (16)	-0.0202 (14)	-0.0355 (14)
C32	0.117 (2)	0.0886 (17)	0.1186 (19)	-0.0389 (15)	-0.0052 (15)	-0.0640 (15)
N1	0.0646 (12)	0.0513 (11)	0.0452 (9)	-0.0199 (10)	-0.0116 (9)	-0.0176 (9)
N2	0.0655 (12)	0.0464 (11)	0.0532 (10)	-0.0191 (9)	-0.0117 (9)	-0.0174 (9)

Geometric parameters (Å, °)

C1—N1	1.2692 (19)	C20—C21	1.384 (2)
C1—C5	1.474 (2)	C20—C26	1.522 (2)
C1—C2	1.524 (2)	C21—C22	1.372 (2)
C2—N2	1.271 (2)	C21—H21	0.9300
C2—C3	1.474 (2)	C22—C23	1.364 (3)

C3—C12	1.366 (2)	C22—H22	0.9300
C3—C4	1.406 (2)	C23—C24	1.373 (2)
C4—C9	1.398 (2)	C23—N1 ⁱ	3.333 (3)
C4—C5	1.405 (2)	C23—H23	0.968 (15)
C5—C6	1.365 (2)	C24—H24	0.9300
C6—C7	1.412 (3)	C25—C28	1.533 (2)
C6—H6	0.9300	C25-C27	1.535 (2)
C7—C8	1 358 (3)	$C_{25} = C_{29}$	1.535(2)
С7—Н7	0.9300	$C_{26} = C_{30}$	1.536 (2)
C_{8}	1 412 (3)	C26-C31	1.520(2)
C8—H8	0.9300	$C_{20} = C_{31}$	1.551(2) 1 542(2)
C_{0} C_{10}	1 405 (3)	C27—H27A	0.9600
	1.405 (3)	C27 H27P	0.9600
C10C11	0.0200	$C_2 / - H_2 / B$	0.9000
	1 409 (2)	$C_2/-H_2/C$	0.9000
	1.408 (3)	C28—N1	3.030 (2)
	0.9300	C28—H28A	0.9600
C12—H12	0.9300	C28—H28B	0.9600
	1.389 (2)	C28—H28C	0.9600
C13—C14	1.402 (2)	C29—N1	3.010 (2)
C13—N1	1.4187 (19)	С29—Н29А	0.9600
C14—C15	1.387 (2)	С29—Н29В	0.9600
C14—C25	1.524 (2)	С29—Н29С	0.9600
C15—C16	1.380 (2)	С30—Н30А	0.9600
С15—Н15	0.9300	С30—Н30В	0.9600
C16—C17	1.360 (2)	С30—Н30С	0.9600
C16—H16	0.9300	C31—N2	2.976 (2)
C17—C18	1.373 (2)	C31—H31A	0.9600
C17—H17	0.9300	C31—H31B	0.9600
C18—H18	0.9300	C31—H31C	0.9600
C19—C24	1.385 (2)	C32—H32A	0.9600
C19—C20	1.402 (2)	C32—H32B	0.9600
C19—N2	1.4178 (19)	С32—Н32С	0.9600
N1—C1—C5	134.72 (18)	C14—C25—C27	112.17 (15)
N1—C1—C2	119.00 (18)	C28—C25—C27	108.18 (15)
C5—C1—C2	106.24 (17)	C14—C25—C29	111.31 (15)
N2—C2—C3	133.50 (18)	C28—C25—C29	109.42 (15)
N2—C2—C1	119.94 (18)	C27—C25—C29	106.54 (14)
C3—C2—C1	106.31 (17)	C20—C26—C30	109.44 (16)
C12—C3—C4	119.1 (2)	C20—C26—C31	111.36 (15)
C12—C3—C2	134.1 (2)	C30—C26—C31	109.69 (18)
C4—C3—C2	106.60 (18)	C20—C26—C32	112.48 (16)
C9—C4—C3	122.8 (2)	C30—C26—C32	107.58 (16)
C9—C4—C5	123.4 (2)	C31—C26—C32	106.17 (16)
C3—C4—C5	113.8 (2)	С25—С27—Н27А	109.5
C6—C5—C4	119.2 (2)	C25—C27—H27B	109.5
C6—C5—C1	134.0 (2)	H27A—C27—H27B	109.5
C4-C5-C1	106 69 (18)	C25—C27—H27C	109.5
$C_{5} - C_{6} - C_{7}$	118 5 (2)	$H_{27A} - C_{27} - H_{27C}$	109.5
	(-)		

С5—С6—Н6	120.8	H27B—C27—H27C	109.5
С7—С6—Н6	120.8	C25—C28—N1	70.73 (10)
C8—C7—C6	122.2 (2)	C25—C28—H28A	109.5
С8—С7—Н7	118.9	N1—C28—H28A	134.2
С6—С7—Н7	118.9	C25—C28—H28B	109.5
С7—С8—С9	121.0 (2)	N1—C28—H28B	113.3
С7—С8—Н8	119.5	H28A—C28—H28B	109.5
С9—С8—Н8	119.5	C25—C28—H28C	109.5
C4—C9—C10	116.6 (2)	H28A—C28—H28C	109.5
C4—C9—C8	115.8 (2)	H28B-C28-H28C	109.5
C10-C9-C8	127.5 (3)	C25—C29—N1	72.04 (9)
C11—C10—C9	120.4 (2)	С25—С29—Н29А	109.5
C11-C10-H10	119.8	N1—C29—H29A	136.4
С9—С10—Н10	119.8	С25—С29—Н29В	109.5
C10-C11-C12	122.5 (2)	H29A—C29—H29B	109.5
C10-C11-H11	118.7	С25—С29—Н29С	109.5
C12—C11—H11	118.7	N1—C29—H29C	110.7
C3—C12—C11	118.5 (2)	H29A—C29—H29C	109.5
C3—C12—H12	120.8	H29B—C29—H29C	109.5
C11—C12—H12	120.8	С26—С30—Н30А	109.5
C18—C13—C14	121.09 (17)	С26—С30—Н30В	109.5
C18—C13—N1	118.71 (16)	H30A—C30—H30B	109.5
C14—C13—N1	119.75 (16)	С26—С30—Н30С	109.5
C15—C14—C13	115.71 (16)	H30A—C30—H30C	109.5
C15—C14—C25	121.64 (16)	H30B—C30—H30C	109.5
C13—C14—C25	122.58 (16)	C26—C31—N2	76.07 (10)
C16—C15—C14	123.15 (18)	С26—С31—Н31А	109.5
C16—C15—H15	118.4	N2—C31—H31A	139.8
C14—C15—H15	118.4	С26—С31—Н31В	109.5
C17—C16—C15	119.76 (19)	H31A—C31—H31B	109.5
С17—С16—Н16	120.1	С26—С31—Н31С	109.5
C15—C16—H16	120.1	N2—C31—H31C	105.3
C16—C17—C18	119.52 (18)	H31A—C31—H31C	109.5
C16—C17—H17	120.2	H31B—C31—H31C	109.5
С18—С17—Н17	120.2	С26—С32—Н32А	109.5
C17—C18—C13	120.68 (17)	С26—С32—Н32В	109.5
С17—С18—Н18	119.7	H32A—C32—H32B	109.5
C13—C18—H18	119.7	С26—С32—Н32С	109.5
C24—C19—C20	120.40 (17)	H32A—C32—H32C	109.5
C24—C19—N2	116.80 (17)	H32B—C32—H32C	109.5
C20—C19—N2	122.43 (16)	C1—N1—C13	123.03 (16)
C21—C20—C19	115.78 (17)	C1—N1—H29B	92.7
C21—C20—C26	121.07 (18)	C13—N1—H29B	94.2
C19—C20—C26	123.11 (17)	C1—N1—H28C	140.3
C22—C21—C20	123.55 (19)	C13—N1—H28C	91.9
C22—C21—H21	118.2	H29B—N1—H28C	64.2
C20—C21—H21	118.2	C1—N1—C29	105.62 (11)
C23—C22—C21	119.9 (2)	C13—N1—C29	80.55 (9)
C23—C22—H22	120.1	H28C—N1—C29	58.5

C21—C22—H22	120.1	C1—N1—C28	146.13 (12)
C22—C23—C24	118.6 (2)	C13—N1—C28	79.23 (10)
C22—C23—N1 ⁱ	109.37 (16)	H29B—N1—C28	57.9
C24—C23—N1 ⁱ	119.39 (15)	C29—N1—C28	48.82 (5)
С22—С23—Н23	123.1 (10)	C2—N2—C19	122.07 (16)
С24—С23—Н23	118.3 (10)	C2—N2—H31B	121.2
C23—C24—C19	121.7 (2)	C19—N2—H31B	96.2
C23—C24—H24	119.1	C2—N2—C31	128.81 (12)
C19—C24—H24	119.1	C19—N2—C31	81.48 (11)
C14—C25—C28	109.13 (14)		

Symmetry codes: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C23—H23…N1 ⁱ	0.97 (2)	2.62 (2)	3.331 (3)	130.6 (17)
C28—H28C…N1	0.96	2.40	3.048 (3)	125
C29—H29B…N1	0.96	2.35	3.010 (3)	125
C31—H31B…N2	0.96	2.30	2.975 (3)	127
Symmetry codes: (i) $-r -v+1 -z+1$				

Symmetry codes: (1) -x, -y+1, -z+1.

Fig. 3